Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Pineal Res ; 76(3): e12952, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587234

RESUMO

Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Animais , Humanos , Receptores de Melatonina , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Melatonina/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G , Mamíferos/metabolismo
3.
Mol Pharmacol ; 105(5): 328-347, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38458772

RESUMO

Plant extracts have played a significant role in traditional medicine for centuries, contributing to improved health and the treatment of various human illnesses. G protein-coupled receptors (GPCRs) are crucial in numerous physiologic functions, and there is growing evidence suggesting their involvement in the therapeutic effects of many plant extracts. In recent years, scientists have identified an expanding number of isolated molecules responsible for the biologic activity of these extracts, with many believed to act on GPCRs. This article critically reviews the evidence supporting the modulation of GPCR function by these plant-derived molecules through direct binding. Structural information is now available for some of these molecules, allowing for a comparison of their binding mode with that of endogenous GPCR ligands. The final section explores future trends and challenges, focusing on the identification of new plant-derived molecules with both orthosteric and allosteric binding modes, as well as innovative strategies for designing GPCR ligands inspired by these plant-derived compounds. In conclusion, plant-derived molecules are anticipated to play an increasingly vital role as therapeutic drugs and serve as templates for drug design. SIGNIFICANCE STATEMENT: This minireview summarizes the most pertinent publications on isolated plant-derived molecules interacting with G protein-coupled receptors (GPCRs) and comments on available structural information on GPCR/plant-derived ligand pairs. Future challenges and trends for the isolation and characterization of plant-derived molecules and drug design are discussed.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Desenho de Fármacos , Extratos Vegetais , Regulação Alostérica
6.
Nat Metab ; 5(10): 1673-1684, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709961

RESUMO

The glucagon-like peptide 1 receptor (GLP1R) is a major drug target with several agonists being prescribed in individuals with type 2 diabetes and obesity1,2. The impact of genetic variability of GLP1R on receptor function and its association with metabolic traits are unclear with conflicting reports. Here, we show an unexpected diversity of phenotypes ranging from defective cell surface expression to complete or pathway-specific gain of function (GoF) and loss of function (LoF), after performing a functional profiling of 60 GLP1R variants across four signalling pathways. The defective insulin secretion of GLP1R LoF variants is rescued by allosteric GLP1R ligands or high concentrations of exendin-4/semaglutide in INS-1 823/3 cells. Genetic association studies in 200,000 participants from the UK Biobank show that impaired GLP1R cell surface expression contributes to poor glucose control and increased adiposity with increased glycated haemoglobin A1c and body mass index. This study defines impaired GLP1R cell surface expression as a risk factor for traits associated with type 2 diabetes and obesity and provides potential treatment options for GLP1R LoF variant carriers.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Adiposidade/genética , Obesidade/genética
7.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762230

RESUMO

Simufilam is a novel oral drug candidate in Phase 3 clinical trials for Alzheimer's disease (AD) dementia. This small molecule binds an altered form of filamin A (FLNA) that occurs in AD. This drug action disrupts FLNA's aberrant linkage to the α7 nicotinic acetylcholine receptor (α7nAChR), thereby blocking soluble amyloid beta1-42 (Aß42)'s signaling via α7nAChR that hyperphosphorylates tau. Here, we aimed to clarify simufilam's mechanism. We now show that simufilam reduced Aß42 binding to α7nAChR with a 10-picomolar IC50 using time-resolved fluorescence resonance energy transfer (TR-FRET), a robust technology to detect highly sensitive molecular interactions. We also show that FLNA links to multiple inflammatory receptors in addition to Toll-like receptor 4 (TLR4) in postmortem human AD brains and in AD transgenic mice: TLR2, C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 5 (CCR5), and T-cell co-receptor cluster of differentiation 4 (CD4). These aberrant FLNA linkages, which can be induced in a healthy control brain by Aß42 incubation, were disrupted by simufilam. Simufilam reduced inflammatory cytokine release from Aß42-stimulated human astrocytes. In the AD transgenic mice, CCR5-G protein coupling was elevated, indicating persistent activation. Oral simufilam reduced both the FLNA-CCR5 linkage and the CCR5-G protein coupling in these mice, while restoring CCR5's responsivity to C-C chemokine ligand 3 (CCL3). By disrupting aberrant FLNA-receptor interactions critical to AD pathogenic pathways, simufilam may promote brain health.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Filaminas/metabolismo , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo
8.
Cell Chem Biol ; 30(8): 920-932.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37572668

RESUMO

The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited ß-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Animais , Humanos , Camundongos , Receptor MT1 de Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Mitocôndrias/metabolismo , Respiração
9.
Pharmaceutics ; 15(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37514032

RESUMO

Melatonin is a tryptophan derivative synthesized in plants and animals. In humans, melatonin acts on melatonin MT1 and MT2 receptors belonging to the G protein-coupled receptor (GPCR) family. Synthetic melatonin receptor agonists are prescribed for insomnia and depressive and circadian-related disorders. Here, we tested 25 commercial plant extracts, reported to have beneficial properties in sleep disorders and anxiety, using cellular assays (2─[125I]iodomelatonin binding, cAMP inhibition, ERK1/2 activation and ß-arrestin2 recruitment) in mock-transfected and HEK293 cells expressing MT1 or MT2. Various melatonin receptor-dependent and -independent effects were observed. Extract 18 (Ex18) from Pistacia vera dried fruits stood out with very potent effects in melatonin receptor expressing cells. The high content of endogenous melatonin in Ex18 (5.28 ± 0.46 mg/g extract) is consistent with this observation. Ex18 contains an additional active principle that potentiates the effect of melatonin on Gi protein-dependent pathways but not on ß-arrestin2 recruitment. Further active principles potentiating exogenous melatonin were detected in several extracts. In conclusion, we identified plant extracts with various effects in GPCR-based binding and signalling assays and identified high melatonin levels and a melatonin-potentiating activity in Pistacia vera dried fruit extracts that might be of therapeutic potential.

10.
Arch Pharm (Weinheim) ; 356(9): e2300149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339785

RESUMO

Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.


Assuntos
Antineoplásicos , Melatonina , Neoplasias , Vorinostat/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Melatonina/farmacologia , Ligantes , Relação Estrutura-Atividade , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Desacetilase 6 de Histona
12.
PLoS One ; 18(4): e0283941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37014877

RESUMO

Intracellular accumulation of tau protein is a hallmark of Alzheimer's Disease and Progressive Supranuclear Palsy, as well as other neurodegenerative disorders collectively known as tauopathies. Despite our increasing understanding of the mechanisms leading to the initiation and progression of tau pathology, the field still lacks appropriate disease models to facilitate drug discovery. Here, we established a novel and modulatable seeding-based neuronal model of full-length 4R tau accumulation using humanized mouse cortical neurons and seeds from P301S human tau transgenic animals. The model shows specific and consistent formation of intraneuronal insoluble full-length 4R tau inclusions, which are positive for known markers of tau pathology (AT8, PHF-1, MC-1), and creates seeding competent tau. The formation of new inclusions can be prevented by treatment with tau siRNA, providing a robust internal control for use in qualifying the assessment of potential therapeutic candidates aimed at reducing the intracellular pool of tau. In addition, the experimental set up and data analysis techniques used provide consistent results in larger-scale designs that required multiple rounds of independent experiments, making this is a versatile and valuable cellular model for fundamental and early pre-clinical research of tau-targeted therapies.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Tauopatias/metabolismo , Doença de Alzheimer/patologia , Neurônios/metabolismo , Descoberta de Drogas
13.
Elife ; 122023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917493

RESUMO

Aggregates of the tau protein are a well-known hallmark of several neurodegenerative diseases, collectively referred to as tauopathies, including frontal temporal dementia and Alzheimer's disease (AD). Monitoring the transformation process of tau from physiological monomers into pathological oligomers or aggregates in a high-throughput, quantitative manner and in a cellular context is still a major challenge in the field. Identifying molecules able to interfere with those processes is of high therapeutic interest. Here, we developed a series of inter- and intramolecular tau biosensors based on the highly sensitive Nanoluciferase (Nluc) binary technology (NanoBiT) able to monitor the pathological conformational change and self-interaction of tau in living cells. Our repertoire of tau biosensors reliably reports i. molecular proximity of physiological full-length tau at microtubules; ii. changes in tau conformation and self-interaction associated with tau phosphorylation, as well as iii. tau interaction induced by seeds of recombinant tau or from mouse brain lysates of a mouse model of tau pathology. By comparing biosensors comprising different tau forms (i.e. full-length or short fragments, wild-type, or the disease-associated tau(P301L) variant) further insights into the tau transformation process are obtained. Proof-of-concept data for the high-throughput suitability and identification of molecules interfering with the pathological tau transformation processes are presented. This novel repertoire of tau biosensors is aimed to boost the disclosure of molecular mechanisms underlying pathological tau transformation in living cells and to discover new drug candidates for tau-related neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Tauopatias/patologia , Microtúbulos/metabolismo , Neurônios/fisiologia , Encéfalo/metabolismo
14.
Eur J Med Chem ; 249: 115152, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36724633

RESUMO

COVID-19 is a complex disease with short-term and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. As many drugs targeting single targets showed only limited effectiveness against COVID-19, here, we aimed to explore a multi-target strategy. We synthesized a focused compound library based on C2-substituted indolealkylamines (tryptamines and 5-hydroxytryptamines) with activity for three potential COVID-19-related proteins, namely melatonin receptors, calmodulin and human angiotensin converting enzyme 2 (hACE2). Two molecules from the library, 5e and h, exhibit affinities in the high nanomolar range for melatonin receptors, inhibit the calmodulin-dependent calmodulin kinase II activity and the interaction of the SARS-CoV-2 Spike protein with hACE2 at micromolar concentrations. Both compounds inhibit SARS-CoV-2 entry into host cells and 5h decreases SARS-CoV-2 replication and MPro enzyme activity in addition. In conclusion, we provide a proof-of-concept for the successful design of multi-target compounds based on the tryptamine scaffold. Optimization of these preliminary hit compounds could potentially provide drug candidates to treat COVID-19 and other coronavirus diseases.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Calmodulina , Receptores de Melatonina
15.
PLoS One ; 17(12): e0278965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36512575

RESUMO

Abnormally high serum homocysteine levels have been associated with several disorders, including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal cells. The inability of leptin to induce activation of its specific signaling pathways, especially under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuroblastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal transducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional activity were significantly inhibited by homocysteine treatment. These effects may be specific to homocysteine and to the leptin pathway, as other homocysteine-related compounds, namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3 phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET biosensor to monitor Ob-R oligomerization and conformational change, suggested that homocysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we found that, unlike methionine or cysteine, homocysteine increases the expression of the endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident protein. These results suggest that homocysteine may induce neuronal resistance to leptin by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.


Assuntos
Leptina , Neuroblastoma , Humanos , Leptina/metabolismo , Receptores para Leptina/genética , Homocisteína/farmacologia , Cisteína/farmacologia , Estresse do Retículo Endoplasmático , Fator de Transcrição STAT3/metabolismo , Obesidade/metabolismo , Metionina/farmacologia
17.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142542

RESUMO

Despite decades of effort in understanding pancreatic ductal adenocarcinoma (PDAC), there is still a lack of innovative targeted therapies for this devastating disease. Herein, we report the expression of apelin and its receptor, APJ, in human pancreatic adenocarcinoma and its protumoral function. Apelin and APJ protein expression in tumor tissues from patients with PDAC and their spatiotemporal pattern of expression in engineered mouse models of PDAC were investigated by immunohistochemistry. Apelin signaling function in tumor cells was characterized in pancreatic tumor cell lines by Western blot as well as proliferation, migration assays and in murine orthotopic xenograft experiments. In premalignant lesions, apelin was expressed in epithelial lesions whereas APJ was found in isolated cells tightly attached to premalignant lesions. However, in the invasive stage, apelin and APJ were co-expressed by tumor cells. In human tumor cells, apelin induced a long-lasting activation of PI3K/Akt, upregulated ß-catenin and the oncogenes c-myc and cyclin D1 and promoted proliferation, migration and glucose uptake. Apelin receptor blockades reduced cancer cell proliferation along with a reduction in pancreatic tumor burden. These findings identify the apelin signaling pathway as a new actor for PDAC development and a novel therapeutic target for this incurable disease.


Assuntos
Adenocarcinoma , Receptores de Apelina/metabolismo , Apelina/metabolismo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Ciclina D1/metabolismo , Glucose , Humanos , Camundongos , Oncogenes , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Neoplasias Pancreáticas
18.
Methods Mol Biol ; 2550: 141-149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180687

RESUMO

The radioligand binding assay is a powerful method to study the interaction of a ligand with its target. This technique allows not only to determine different pharmacological key parameters such as the affinity and the association and dissociation constants but also to estimate the amount of target expressed in recombinant or endogenous cells or tissues. The current detailed protocols describe the different binding assays (saturation, kinetic, and competition) that can be performed on melatonin receptors using their most commonly used and validated radioligands 2-[125I]-iodomelatonin (2-[125I]-MLT) and [3H]-melatonin ([3H]-MLT).


Assuntos
Melatonina , Sítios de Ligação , Ligação Competitiva , Radioisótopos do Iodo , Cinética , Ligantes , Melatonina/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Melatonina
19.
Methods Mol Biol ; 2550: 163-169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180689

RESUMO

The [35S]GTPγS assay is a method that measures the level of G protein activation by determining the binding of [35S]GTPγS, a non-hydrolyzable and radioactively labeled GTP analog, to Gα subunit of heterotrimeric G protein upon activation of G protein-coupled receptors (GPCR). The power of this assay lies in the fact that it measures an early event of GPCR signaling in cells expressing recombinant receptors and cells and tissues expressing endogenous receptors. The present protocol describes a sensitive method for studying G protein activation by melatonin receptors MT1 and MT2, in membranes prepared from mouse brain. Immunoprecipitation of [35S]GTPγS-labeled G proteins with Gα subunit specific antibodies (Gi, Gq, etc.) allows to determine the activation of specific G proteins. The assay can be easily applied to other tissues.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Animais , Encéfalo/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Camundongos , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Melatonina/metabolismo
20.
Methods Mol Biol ; 2550: 179-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180691

RESUMO

Cyclic adenosine monophosphate (cAMP) is an important ubiquitous second messenger and one of the major pathways transducing the activation of G protein-coupled receptors (GPCRs). Quantifying intracellular levels of cAMP in an accurate and high-throughput manner is, therefore, of high interest to access functional responses of GPCRs. The neurohormone melatonin is selectively recognized by two GPCRs in mammals, named MT1 and MT2. Both have an inhibitory action on intracellular cAMP levels. Here, we describe a homogeneous high-throughput-compatible methodology routinely used in our laboratory to measure cAMP levels following activation of melatonin receptors.


Assuntos
Melatonina , Monofosfato de Adenosina , Animais , AMP Cíclico/metabolismo , Mamíferos/metabolismo , Melatonina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Melatonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...